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This paper modifies and refines earlier work of Palm (1960) concerning the finite- 
amplitude steady state of cellular convective motion attained when a horizontal 
layer of fluid becomes unstable as a result of being heated from below. The two 
non-linear ordinary differential equations to which the problem was reduced by 
Palm (under certain conditions) are given in a corrected form, and are then 
analysed in some detail. The principal conclusions are that, for the model con- 
sidered, hexagonal convection cells may be the stable equilibrium state only if the 
variation of kinematic viscosity with temperature is sufficiently great. Under the 
same circumstances a two-dimensional roll cell is also possible, the initial condi- 
tions determining which state actually occurs. Althoughfurther work is indicated, 
it seems probable that in an actual experiment with sufficiently large kinematic- 
viscosity variation, the hexagonal cells are more likely to appear. The analysis 
enables conclusions to be drawn concerning the flow direction at  the cell centre, 
and also shows that a disturbance of sufficient magnitude may grow even though 
the situation is a stable one by linearized theory. Comparison with experiment is 
discussed, 

1. Introduction 
In  a recent paper, Palm (1960) has studied the non-linear interaction of two 

special disturbances in thermal convection, in order to discover what combination 
of them might be ‘preferred’ at finite amplitudes. Palm also considered the 
direction of flow in the cells, a property which was determined at  the same time 
as the question of the preferred mode. ‘Free’ boundary conditions both above 
and below were assumed and the kinematic viscosity was allowed to vary with 
temperature; the work showed the latter dependence to be of great importance. 

As his two original disturbances, chosen from those allowed by linearized 
theory, Palm used the particular cells which, in a certain linear combination, 
produce a hexagonal cell. (Other reasons for choosing the original disturbances 
are considered below.) From his analysis he suggested that the hexagonal cell is 
the preferred mode at  finite amplitudes, in the sense that the two disturbances 
considered interact as they grow in amplitude in such a way as to yield the 
hexagonal cell as the ultimate result. There are two criticisms which may be 
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levelled against Palm’s conclusions : (i) his equations should include as special 
cases, and agree with, the results of earlier calculations by Malkus & Veronis 
(1958) and Gorkov (1957), but they do not; (ii) in no sense has Palm proved that 
the hexagonal cell is the preferred (stable) mode of disturbance as t -+ a. What he 
did show is that the hexagonal cell is one possible equilibrium state. 

The former of these criticisms was discussed in a lecture at Stresa (Stuart 
1960b) and it was concluded that Palm’s published work contains errors which 
may invalidate the assertions he makes. (It was mentioned, and should be re- 
emphasized, that the principles of the analysis used by Palm are of considerable 
interest and importance.) Recently, in private correspondence, Prof. Palm has 
kindly notified us of some corrections to the algebra of his paper, and it appears 
that agreement is now established with the calculations of Malkus & Veronis 
(1958) and Gorkov (1957) for the case of constant viscosity. Prof. Palm has 
advanced the view that these corrections do not change the conclusions of his 
paper, namely, that the hexagonal cell is the preferred mode and that the fluid at 
the centre of the cell flows in the direction of increasing viscosity. 

The present writers believe that Prof. Palm has not proved his assertions and, 
moreover, that they are not strictly true. (We find, for example, that the hexa- 
gonal mode can be preferred only if the variation of kinematic viscosity with 
temperature is sufficiently great.) Our work does, however, give some mathe- 
matical support to Palm’s physical concepts, and it is our object to show where 
mathematics does and does not give such support. The central part of our analysis 
is a consideration of the solutions to Palm’s revised pair of ordinary differential 
equations. The results of this analysis are summarized and discussed at  the end 
of the paper. 

2. Palm’s analysis 
Palm’s work was an extension in two ways of the theory of finite-amplitude 

thermal convection: (i) more than one initial disturbance was considered to be 
present; and (ii) the viscosity was allowed to vary with temperature. The latter 
variation was incorporated because experiments of Graham (1933) and Tippels- 
kirch (1956) showed it to be important, particularly with reference to the 
direction of circulation in the convection cells. We note, however, that the 
kinematic-viscosity variation with temperature was approximated, for mathe- 
matical simplicity, in a certain way (see (2.4) below). The validity of various other 
physical approximations made is discussed further in 8 7, but for the present we 
can argue that the basic partial differential equations used by Palm form a better 
model of the non-linear problem than do equations (cf. Malkus & Veronis 1958; 
Gorkov 1957) which do not allow viscosity to vary with temperature. 

Following earlier work, Palm assumed the initial temperature distribution to 
have a constant gradient between two horizontal surfaces. (For mathematical 
simplicity both of the latter were taken to be ‘free’, the boundary conditions 
being ones of zero vertical velocity, zero shear stress and specified temperature.) 
We feel that the assumption of an initially uniform temperature gradient can be 
justified on two grounds: (i) it leads to a meaningful and feasible problem which, 
in the linearized case, gives a critical Rayleighnumber (for the onset of convection) 
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in good agreement with experiment; (ii) since an equilibrium state of finite- 
amplitude convection involves a balance of diffusion and convection, it seems 
unlikely that this state will be affected by minor irregularities in the initial 
temperature distribution. 

Palm showed that one effect of variation of viscosity is to lower the critical 
Rayleigh number. Proceeding to his non-linear analysis he considered an initial 
motion consisting of the sum of (i) a disturbance (vertical velocity) which, by 
rotation of axes, can be written as 

(2.1) 
and (ii) of other disturbances (‘noise’) superimposed on this. (Here x and y are 
mutually perpendicular horizontal co-ordinates and z is the vertical co-ordinate 
chosen so that the boundary planes are at z = 0, h; also h = n/h.) The amplitude 
A,,, is afunction of time t only. Palm pointed out that, to the second order, (2.1) 
can reinforce the disturbance 

A,,, cos 2Zy sin h z  

Alll(t) cos kx cos Zy sin hz ,  ( 2 . 2 )  

where k2 = 312, (2.3) 
and be reinforced by it, provided Aozl has the appropriate sign. (Condition (2.3) 
ensures that the ‘overall’ horizontal wave-number is the same for the two 
disturbances, which means that linear theory gives the same amplification rate 
for the two disturbances.) This effect occurs through the terms introduced by the 
variation of kinematic viscosity v with temperature, namely through the variable 
terms of 

where /3 denotes the initial uniform temperature gradient, O(z,t) the mean 
temperature, and O(x, y, z, t )  the departure of the temperature from this mean. 
Palm suggested that a mathematical analysis can be restricted to a study of the 
interaction and growth of (2.1) and (2.2) alone. His argument appears to have 
two stages: (i) disturbances are selected that have maximum amplification (which 
implies (2.3)) according to linearized theory; (ii) of that class of disturbances, (2.1) 
and (2.2) are chosen on the physical grounds that the second-order mechanism of 
mutual reinforcement will render them preferred over other (non-reinforced) 
amplitudes. Our view (see also 0 7) is that a mathematical investigation, involving 
the interaction of many disturbances, is necessary before Palm’s suggestion can 
be accepted with confidence. Nevertheless, a study of the simpler problem with 
two disturbances is a necessary preliminary to this further investigation. We 
therefore pursue, in a more complete way, the consequences of Palm’s physical 
model. 

After some complicated analysis (of the compressible Navier-Stokes, continuity 
and temperature equations, simplified by the Boussinesq approximation and 
subject to the physical approximations discussed in 9 7), Palm obtained a pair 
of ordinary differential equations for the amplitudes A,,,( = $) and A,,,( = 2,) 
of (2.1) and (2.2). They are quoted here in revised form, following corrections 
communicated to us by Prof. Palm, and correspond to equations (6.17) and (6.18) 
of the original paper. Before giving these equations, however, it  is desirable to 
mention the mathematical approximations involved in deriving them. Letting 

Y = v, + y cos [ (A lp )  (0 + S)] = vo + y cos hz + (yh/P) S sin hz, (2.4) 

19-2 
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Ap denote the difference between the actual initial temperature gradient p and 
the critical initial gradient Po for the onset of convection, we assume that y/vo and 
A/3/Po are both very small. These conditions imply that the initial amplification 
rates of the disturbances are small. In  such cases it is valid (as has been explained 
by Stuart 1960a in a related case) to neglect time differentials in the equations for 
the mean field and all components of the disturbance except in those for the 
fundamentals (2.1), (2.2),provided the object is to obtain thedominant part of the 
non-linear problem. Palm's work involves the neglect of such time differentials 
(see pp. 186, 190,191) in the mean temperature and in the harmonics, but not in 
the fundamentals. On the other hand, we have derived equations (2 .5 )  and (2.6) 
below by a formal expansion procedure analogous to that used by Watson (1960) 
and all the above approximations are natural concomitants of the formal scheme. 
(We note that, although time differentials of the mean temperature are neglected 
in computing coefficients of the terms kept in (2.5) and (2 .6)  below, the variation 
with time of the mean temperature field 0 is certainly taken into account, for 0 is 
given by a power series in & and Z,.) To sum up, we agree with Palm that, in his 
(corrected) equations (2.5) and (2.6) below, only terms negligible for small y/vo 
and AP/& including higher powers of the amplitudes, are omitted. 

The differential equations for the fundamental amplitudes are 

GI"; + (K  + I!,,) g2 Y ;  - 4ga12(Ap) Y, 
= - (hy /8)  (48Z4 - 4h2Z2 + 3h4) 1; 2, - R Y: - PI; 221, (3.5) 

G Z ~  + ( K  + vo) r22; - 4gaZ2(Ap) 2, 
= -(hy/32) (4814-4h212+3h4) Y : - R I Z ~ - $ P Y : Z 1 ,  (2.6) 

where corrections of order y 2  in the coefficients of (Ap) I;, Y;, (AP) Z,, Z;, Y2, and 
and Yl 2, are ignored, and the limits y -+ 0, Ap + 0 have been taken in the 
coefficients of the third-order terms. Primes denote differentiation with respect 
to time t .  The notation is as given in Palm's paper, except that R, in (2.6) is there 
given incorrectly by 4R, $P in (2 .6 )  is incorrectly replaced by tP, and the 
coefficients of Y, 2, and Y2, are given only for the special case k2 + l2 = -&A2, which 
gives the overall wave-number appropriate to the critical Rayleigh number when 
terms of order y2  are neglected. Prof. Palm's revised calculations give 

1 gap12 
R, = 5- 

K 2 G  ' 

(2.7) 

(2.8) 

P = 4R-R,, (2.9) 

where (8.10) 

Other corrections noted by Prof. Palm include the following, where pages and 
equation numbers refer to his paper: 

(i) in equations (6.7) add 

0, + 0 = C Dii,(t) cos ikx cosjly sinmhz; 
ij m 
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(ii) page 190, line 3, replace v V ~ W ,  by vV2w,; 
(iii) in (6.12) replace - 9 ~ P h  by ~ A K c T ~ ,  and change sign of +gahZ2; 
(iv) in (6.14) the expression for Doo2 requires the addition of -PA$2,/8h~2c. 
It is convenient, before further study of equations (2.5), (2.6) is made, to 

convert to non-dimensional quantities by taking vo as a reference viscosity, h as 
a length, K / h  as a velocity, vo~/agh3 as a temperature and h2/K as a time. Then with 

a; = 412h2/n2, (2.11) 

Y1 = Y / V O ,  (2.12) 

( Y ,  2) = ( h / K )  (Y,, Z,), (2.13) 

9 = a&h4/Kv0, (2.14) 

9 = V o / K ,  (2.15) 
equations (2.5) and (2.6) become 

~ + ( i + ~ ; )  ~ ~ + + 4 ( 1 + ~ ) ( 1 + ~ ~ , ) 2  Y ' - + ~ Z , B ( A ~ )  Y 

my1 +a;) 2" fn4(1 +.PI (1 + a y ~ '  - 772a;9(~g) z 
= -ylXYZ-Ro Y"P0 YZ2,  (2.16) 

= - ~ ~ l f J Y 2 - R l o 2 3 - ~ P o  Y2Z, (2.17) 

where 
x = g7759(3a";aa2,+3), (2.18) 

8Ro = r49-l( 1 + a;) (Go +el) + [a219/(301.21+ 4) (a21 + 4)] 

x [ ( ~ ~ ; + 4 ) ~ ~ + ( 3 a ; + 4 ) < , + ~ 9 ( 1  +a:)-l(2a;'+ 13$+ 14)], (2.19) 

8Rl0 = 99Gq 1 + a y ,  (2.20) 

Po = 4RO-Rl0, (2.21) 

P,, = ~ [ ~ 4 ( 1  +a;) (3a;+4)+a;(i +a21)-l~~1/[774(3a2,+4)3-3a;9~, (2.22) 

p ,, - - -9 la[774(l +at) (4+aZ,)+a2,(1+~121)-~99]/[77~(4+aZ,)~--;9], (2.23) 

(2.24) 

9,. denoting the critical Rayleigh number. It is consistent with our analysis so far 
to approximate the Rayleigh number in (2.19) to (2.23) by its critical value for 
y = 0. It is then simple to show that R,, Po and R,, are positive for all real a,. 

Equation (2.9) ensures that particular solutions of equations (2.5) and (2.6) 

(2.25) may be obtained in the form = 22. 

These correspond to hexagonal cells and, as Prof. Palm has pointed out privately, 
(2.9) ensures that solutions of equations (2.5) and (2.6) are of the same kind as the 
solutions of equations (6.17) and (6.18) of his paper. This remains true with our 
changes of the second-order coefficients in (6.17) and (6.18): in (2.5), the %Z, 
coefficient is still four times as large as the YZ, coefficient in (2.6). 

For the case y = 0, there are special steady solutions of (2.5) and (2.6) corre- 
sponding to the so-called rectangular cells (with k/Z = J3), two-dimensional cells, 
and hexagonal cells. The results for the two former cases are in agreement with 
the earlier results of Rfalkus & Veronis (1958, pp. 235-6 and 243-4), while the 
result for the hexagonal case is in agreement with the paper of Gorkov (1957, 
equation (14)), except for slight numerical discrepancies. 

A 9  = 9 - 9,., 
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3. Further analysis 
The next main problem is to study the stability of the steady (equilibrium) 

solutions of equations (2 .16 )  and ( 2 . 1 7 ) .  To this end it is convenient first to 
rewrite the equations in the form 

by’’ + Y’ = el Y -a,YZ-RY3-PYZ2,  

b2” +Z‘ = el 2 - &a,Y2- R, Z3 - &PY22, 
(3 .1 )  

(3 .2)  

where the time has been re-defined to render the coefficients of Y’ and 2’ equal 
to unity and the zero suffixes of R,, Po, R,, have been dropped for convenience. 
We shall consider both el (which is proportional to the Rayleigh-number dif- 
ference) and a, (which is proportional to the coefficient of the variation of viscosity 
with temperature) to be small parameters which can be varied independently. 

We shall neglect the second-derivative terms as it can be shown that they do 
not affect the stability or instability of the steady solutions when E ,  and a, are 
small. (If the equations are linearized about a given steady solution, the inclusion 
of the second derivatives merely adds two decaying exponential solutions to 
those solutions obtained by neglect of the second derivatives.) To accomplish this 
formally, we expand Y’ and 2’ in powers of Y and Z, up to terms of third order, 
and obtain 

Y’ = eY-aYZ-RY3-PYZ2,  (3 .3 )  

2’ = E Z - $ ~ Y ~ - R , Z ~ - & P Y ~ Z ,  (3 .4 )  

where the limits as el, a, -+ 0 have been taken in the coefficients of the cubic terms. 
The coefficients E and a differ slightly from and a,; in fact E is given by the 
O(s,) root of 

b € 2 + E - E 1  = 0, (3 .5)  

and a = al/ ( l  + 3ke). (3 .6 )  

I: Y = Z = O ,  (3 -7 )  

IIa, b :  Y = 0,  Z = +(e/R,)+, (3 .8 )  
IIIa, b:  Y = 2 2 ,  Z = (2T)-l[  -a T 2/(a2+ ~ E T ) ] ,  (3.9)  

The equilibrium solutions are 

IVa,b: Y = - 2 2 ,  2 = (2T)-1[-aT4(a2+4eT)],  (3.10) 

Va ,b :  Z = -a/&, Y = + R - * [ E - R , ~ ~ Q - ~ ] + ,  (3 .11 )  

where T = P + 4 R  = 8R-R,, (3 .12 )  

(3 .13)  Q = P - R ,  = 2(2R-R,). 

Note that V is meaningless for 
eQ2 < R,a2. (3.14) 

Solutions I to V can have physical meanings ascribed to them as follows. In  
accordance with experiment, and with a definition implied in Rayleigh’s work 
(1916, p. 443),  a cell is taken to be bounded in the (2,y)-plane by a contour 
through which no fluid flows and along which the vertical velocity has one sign. 
It then follows that I represents no motion, I 1  represents cells of two-dimensional 
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plan-form and I11 and IV  represent cells of hexagonal plan-form. Case V repre- 
sents closed cells except for E = Rla2Q-2, when V is equivalent to 11; when 
E = a2Q-2(4R+R,), V is equivalent to certain of the hexagonal cases, and when 
a t 0, V is the so-called rectangular cell. According to the above definition, 
however, the last case (a = 0 ,Z  = 0; Y cos kx cos Zy) does not represent a cell 
bounded by a rectangle, since the vertical velocity changes sign along possible 
rectangular contours in the (z, y)-plane; it represents, in general, a cell bounded 
by a certain curved contour. 

The coreof theanalysisleading to (2.16)and(2.17)andthence to (3.3)and(3.4), 
is an expansion in powers of Y(t)  and Z(t) .  For the expansions to converge, Y and 
Z must be small, which can now be seen to require that e* and a be small compared 
to  1. We have therefore been consistent (i) in keeping O(y) terms but ignoring 
O(y2)  terms in the quadratic coefficients (factors of Y Z  and Y 2 )  of (2.16) and 
(2.17), (ii) in ignoring O(y )  and O(s)  terms, compared to the terms kept, in the 
third-order coefficients of (2.16) and (2.17), (iii) in taking limits as el, a, --f 0 in the 
third-order coefficients of (3.3) and (3.4), (iv) in approximating the coefficients 
of the linear terms, as described after (2.6) and (v) in neglecting higher powers. 

4. Stability of the equilibrium solutions 
A complete solution of (3.3) and (3.4) is not known, so to determine which of the 

equilibrium solutions will prevail we resort to a linearized stability analysis. This 
will enable us to classify the equilibrium solutions as nodes (stable or unstable), 
saddle points, etc. For this purpose we shall refer to the book by Stoker (1950, 

Suppose that any equilibrium solution is represented by Y = yo, Z = zo. We 

(4.1) 

(4.2) 

(4-3) 

pp. 38-45). 

then write 

substitute in (3.3), (3.4), linearize, and obtain 

Y =y(J+y, z = zo+z, 

y’ = (8 - az0 - 3Ry: - P z ~ )  y + ( - ayo - 2Pyo x 0 )  Z, 

2’ = ( - &ZJo - P ~ o  20) y f (8 - 3R12: - 4Py:) 2, 

which may be written in the form 

and the solution is a saddle point or node according as (Stoker 1950) 

aS-/3y > 0 (saddle), or a 8 - p ~  < 0 (node). (4.6a, 6 )  

In  the latter case, the node is stable or unstable according as 

P+y < 0 (stable node), or P+y > 0 (unstable node). (4.7a, b )  

We do not consider the special cases where as - Py = 0 and/or P + y = 0. These 
are instances of ‘structurally unstable ’ situations in which the qualitative picture 
is altered by an arbitrarily small change in the coefficients (Andronow & Chaikin 
1949). The results here would have little relevance to our physical problem; in 
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particular, except for structurally unstable cases, we can be sure that, for suf- 
ficiently small a and e, our stability results will be unaffected by the approxima- 
tions discussed at the end of 3 3. 

Determination of when the various cases in (4.6) and (4.7) occur is now 
straightforward, once it is observed that 2R - Rl and 8R - Rl can easily be shown 
positive for all real a1 by using the substitution for 92 discussed under (2.24). The 
results are illustrated schematically in figure 1. Defining q by 

q = as-&, (4.8) 

we see that the extreme right- and left-hand sides of the diagram represent the 
limits as q tends to co, though a and E: themselves remain small compared with 

Q Q 
(-4 @ 

Value ofua-1 = q 19 -Q q=o  
Rt (4R + R,)j 1 

Vu, b  meaningless^ SaddleAt-.Stable node-+ S a d d l e 4  Meaningless Vu, b 

I I 
I I 
I 
I 8 

Stable node I - IIU I IIu - Saddle 

I 
I I I I U  ; Saddle Stable node-IVu 

Y I 

IIIU 
IVU - 

I 

I 
I 4-01 q-0 I 

I 
I 

I I Unstable node , I I 

I I 

I IIIb 
I IV b I :;!- Stable node --I---- Saddle 

IIb- Stable node -Saddle-I1 b 

FIGURE 1. Schematic representation of stability of equilibrium solutions for 6 > 0. The 
diagram shows ranges of q for which the modes described below are stable (stable node) 
or unstable (unstable node or saddle point). 
I: No motion; IIa, b :  two-dimensional cells; I I I a ,  b and I V a ,  b :  hexagonal cells; V a ,  b :  
closed cells except for q = kQR;*,  whenthey aretwo-dimensional. A t  q = *Q(4R+ RJ-4 
they are equivalent to certain of t,he hexagonal cells, while at q = 0 they take the form 
sometimes described as ‘rectangular’ (Y cos Ix cos Zy with Z 0). 

unity. The centre of the diagram, q = 0,  represents the case when the viscosity 
does not vary with temperature. Here case V and the two-dimensional cells I1 are 
stable nodes, but the hexagonal cells 111, 1V are saddle points (and therefore 
unstable). Another point is that the two possible types of closed cell, hexagonal 
111, I V  and case V, are never simultaneously stable nodes. On the other hand, 
a closed cell and a two-dimensional cell are stable nodes simultaneously for all 
values of q. 

A major effect of the inclusion of the variation of viscosity with temperature is 
that, for sufficiently large values of q, the hexagonal cell changes character from 
saddle point to stable node; this is a most important feature brought out by our 
work. Given in figure 1 are the actual values of q which separate zones of different 
qualitative behaviour. These values are deduced from equations (4.3) and (4.3). 
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(Note, however, that a t  these values of q the situation is structurally unstable and 
the present discussion is not valid.) 

Since, for a given q,  there is always more than one stable node, Palm's conten- 
tion that a hexagonal cell is the preferred mode is not necessarily true for large 
values of q. Moreover, when q is small, the hexagonal cell is a saddle (unstable) 
point so Palm's assertion cannot be true. By use of a little more mathematics 
together with some reasonable speculation, however, it  is possible to elucidate 
the matter a little further. Some special solutions can be calculated, and these 
enable a plausible picture of the general solution to be obtained. 

5. Behaviour of the solutions to (3.3), (3.4) 
We consider s > 0. One solution of (3.3), (3.4) is 

Y = 0, 2 = f2/[eCe2"t/(l +R,Ce2")], (5.1) 

Y = +m, z' = s 2 - a ~ 2 - ~ 2 3 ,  (5.2) 

where C is an arbitrary positive constant. A second solution is given by 

whence, by separation of variables 

121 I ( Z - s ~ / ( Z - r ~ l ~  = T' = T(a2+4sT)-4. (5.3) 

Here to is an arbitrary constant, and r and s are the equilibrium values of Z with 
upper and lower signs, respectively, in (3.9) and (3.10). I n  both cases, choosing 
a different arbitrary constant corresponds to choosing a different time origin. 

From (5.1) it  can be seen that the solution tends to the equilibrium point IIa or 
I1 b according as Z 5 0. If we restrict consideration to a > 0, it  can be shown 
from (5.3) that, for Y = 2 2  the solution tends to the equilibrium state IIIa or 
IIIb according as 2 ;  0; similarly, for Y = - 2 2 ,  the solution tends to the 
equilibrium state IVa or IVb  according as 2 2 0. (For a < 0 related results can 
be obtained.) In  both (5.1) and (5.3) the solutions leave Y = 2 = 0, as we would 
expect. 

The integral curves given by (5.1), (5.2) and (5.3) are illustrated (for a > 0, 
e > 0, 1 9 a2 2 2 .  The arrows 
illustrate the direction of development of the solutions as t increases. Also 
marked are the characters of the equilibrium points. At each equilibrium point, 
it  is possible to determine the directions in which the integral curves may 
approach or leave (Stoker, 1950). The results, which should be read with reference 
to figure 3, are as follows: 

UN I: all directions; 
SN I I a :  all solutions approach on Y = 0 except for one pair of singular 

S I1 b: one pair of solutions approaches on Y = 0, and one pair of solutions 

SN I I Ia :  all solutions approach on Y = 2 2  except for one pair of singular 

S I11 b:  one pair of solutions approaches on Y = 2 2 ,  and one pair of solutions 

e) in figure 2 by the straight lines Y = 0, Y = 

solutions, which approach on Z = (e/Rl)*; 

leaves on Z = - (s/R,)B; 

solutions, which approach with clY/clZ = - 1; 

leaves with dY/dB = - 1; 
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SN IVa: all solutions approach on Y = - 22, except for one pair of singular 
solutions, which approach with d Y/dZ = 1 ; 

S IVb: one pair of solutions approaches on Y = 2 2 ,  and one pair of solutions 
leaves with dY/dZ = 1. 
(In the above, UN denotes an unstable node, SN a stable node, and S a saddle 
point.) 

FIGURE 2. Trajectories for a > 0, E > 0, 1 + as + E :  S, saddle point; SN, stable node; 
UN, unstable node. Straight lines are exact; curves are Speculative. 

With these properties it is possible to sketch curves of the kind shown in 
figure 2 ;  the curves drawn are plausible but speculative. (One cannot be sure, for 
example, that the solution leaving S I I b  for Y > 0 does not approach SN N a  
along the singular path with dY/dZ = 1; it  must approach SN I V a  in some way, 
however, since no solutions to (3.3), (3.4) can tend to the line at  infinity; similar 
reservations must be made with reference to the other curves in figure 2.) We 
are now in a position to suggest that the lines Y = & 2 2  (2 > 0) and Y = 0 (2 < 0) 
are lines of demarcation, in the following sense: (a) Above Y = 0 (2 < 0) and 
Y = 2 2  (2 > 0) trajectories tend to SN IVa;  ( b )  below Y = 0 (2 < 0) and 
Y = - 2 2  (2 > 0) trajectories tend to SN I I I a ;  (c) Between Y = 4 2 2  (2 > 0) 
trajectories tend to SNIIa.  Thus we see that for a solution near the origin the 
stable node to which it tends depends upon the initial conditions under which the 
perturbation develops. Theoretically the two-dimensional mode may occur. This 
matter is discussed further in $7 .  
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If the hexagonal mode does occur, then the flow is downwards at the centre of 
the cell if a > 0 (because the stable nodes have 2 < 0) and upwards at the centre 
of the cell if a < 0 (because the stable nodes have 2 > 0). For example, the 
solution I I I a  for a positive gives the vertical velocity (using non-dimensional 
quantities) 

W = -[( a + (a2 + 4eT))}/2T] [2 cos kx cos Ey + cos 21y] sin r r x ,  (5.4) 

which is negative at the cell centre x = y = 0. For the range of variables under 
consideration, a > 0 if and only if u increases with temperature, and a < 0 if and 
only if u decreases with temperature, so that our analysis suggests that the vertical 
flow is in the direction of increasing kinematic viscosity. This result was suggested 
by Palm from the physical requirement that the sign of 2 be such that the second- 
order term destabilizes. We have shown that there are stable hexagonal equi- 
librium states with that sign of 2, thus supporting Palm's criterion, and we have 
determined the vertical-flow direction at equilibrium. Palm's argument does not 
appear to take third-order terms into account, but it is satisfying that we have 
obtained a similar result by so doing. 

The above result concerning the direction of flow supports the explanation, 
which was first advanced by Graham (1933), of why the observed motion at  the 
centre of the cell generally takes place in opposite directions in liquids and gases: 
the fluid flows in the direction of increasing viscosity, which occurs with increasing 
temperature in most gases but with decreasing temperature in most liquids. 
Graham's suggestion received support from Tippelskirch's (1956) important 
experiments with liquid sulphur near 153 "C, where its viscosity has a minimum; 
the vertical flow at the cell centre was in opposite directions according as the 
temperature lay above or below this value. Although the present theory suggests 
that kinematic viscosity, rather than viscosity, is the important parameter, this 
difference is probably unimportant in most experiments. Reservations are still 
necessary, however, because of the assumptions and approximations made. 

6. Instability due to non-linear effects 
An additional feature of equations (3.3) and (3.4) is that certain solutions can 

be amplified even for E < 0 (when the situation is stable according to linearized 
theory) if the amplitude of the disturbance is large enough. This provides an 
example of instability under subcritical conditions. (For a discussion of this 
possibility, see, for example, Stuart 1960a.) It can be seen from (3.8) and (3.11) 
that the equilibrium solutions I 1  and V are meaningless (being purely imaginary) 
for E < 0. On the other hand, solutions I11 and IV have meaning if 

a2+4eT > 0. (6.1) 

The solution for the special cases Y = -t 2 2  can be obtained from (5.3) in the 

(6.3) 
form 

where r ,  s and T' have the same definitions as in equation (5.3). 
We can show that, for positive values of a in the range a2 > 4 IeI T ,  solutions 

I I I a  and I V a  are stable nodes while solutions I11 b and I V b  are saddle points; 

\2-r lsy/ lZl  I Z - s I ~ ~  = exp[lel ( t - to ) ] ,  
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the reverse is true for a negative. The case when a21 \el is large, and a is positive is 
illustrated in figure 3. The directions of the solutions on the straight lines 
Y = +_ 2 2 ,  Y = 0 are given by (6.2) and (5.1), with C as anegative constant in the 
latter. The exact behaviour of the curves marked G is not known, but for our 
purposes it is sufficient to realize that solutions would tend to SN I V a  if above the 
upper G curve and to SNIIIa  if below the lower G curve. The nature of the 
solution (6.2) for Y = 3 2  is shown schematically as an inset in figure 3. The role of 

% S N I V ~  

/ Solution for I’=2i: 

/ 

$N 111 a 

\ 
1‘=-2Z 

FIGURE 3. Trajectories for a > 0, 6 < 0, 1 > a2 5 I E /  : S, saddle point; SN, stable node; 
UN, unstable node. Straight lines are exact ; curves G are approximate. 

s is seen as a threshold amplitude above which disturbances amplify. It should be 
noted that the solution (6.2), like (5.3)) is valid only for bounded 2, of order a2 or e ;  
for larger amplitudes equations (3.3) and (3.4) are invalid because of higher-order 
terms omitted. 

7. Summary and concluding remarks 
We summarize our conclusions so far: 
(1) Contrary to Palm’s assertions, it  is not possible to establish conclusively 

from his analysis, even as we have extended it, that ‘when t --f 00, the motion 
tends to a pattern consisting of hexagons’. For all values of the parameter a, 
representing the variation of viscosity with temperature, there is always another, 
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non-hexagonal, mode toward which solutions may tend as t+m.  The mode 
attained depends on the initial conditions for small amplitudes. Provided that a2 
is large enough, the final mode may be hexagonal, but for small values of a2, 
including zero, it  cannot be hexagonal. Other cells, including two-dimensional 
ones, also are stable in determined ranges of a2. (Despite these mathematical 
conclusions, however, observation and physical reasoning suggest that the two- 
dimensional roll is unlikely to occur in practice; it  is felt that the present result, 
that the two-dimensional roll can be a stable form, may have been introduced by 
the approximations and assumptions discussed below.) Even if the final mode is 
hexagonal, for earlier times the flow is a nondescript mixture of closed cells and 
rolls. This is in agreement with Benard’s statement, quoted in Malkus & Veronis 
(1958, p. 356), that in his experiments (which may, however, have involved strong 
effects of surface tension) an initially ‘disordered cellular regime ’ was quickly 
succeeded by a steady field of hexagons. 

( 2 )  The important role of the parameter a (or y )  is that, whereas for sufficiently 
small values of a2 the hexagonal cells are saddle (unstable) points, for sufficiently 
large values of a2 they are stable nodes. 

(3) If the hexagonal mode occurs, the theory shows the vertical flow a t  the 
centre of a hexagonal cell to be in the direction of increasing kinematic viscosity. 
This agrees with experiment. 
(4) Instability is theoretically possible for subcritical Rayleigh numbers 

(t‘ < 0) ,  provided that both y (or a, cf. (6.1)) and the initial amplitude are large 
enough; here the final result as t -+ 00 is a hexagonal mode. It is not known 
whether this occurs in practice. For Rayleigh numbers below the critical, however, 
a certain type of instability has been observed, namely the ‘ columnar instabilities ’ 
of Chandra (1938). For a discussion giving a possible mechanism for this pheno- 
menon see the Appendix to this paper. 

Among the questions which remain to be resolved are the following: (i) Does 
use of the physically unrealizable ‘free-free ’ boundary conditions invalidate the 
conclusions? (ii) Palm’s work has shown the variation of viscosity with tempera- 
ture to be very important. Are the conclusions invalidated by our omission of 
other small effects, such as surface tension, variation of thermal conductivity with 
temperature, viscous dissipation of energy, variation of density with temperature ? 
Are the conclusions invalidated by the special form of the kinematic-viscosity 
reIation with temperature? (iii) Can the choice of the original disturbances which 
are allowed to interact be rigorously justified? (iv) Can the equilibrium states 
obtained be proved stable against all possible disturbances ? 

We suspect that the answer to the first two questions is ‘No’ in the sense that 
the simplifications mentioned in (i) and (ii) are justified in a study showing one 
possible mechanism enabling the final establishment of hexagonal modes. That 
other mechanisms (and other modes) are possible is shown by the fact that unless 
a is large enough, hexagons are definitely unstable. When a is small, correct 
boundary conditions, for example, may well be essential. On the other hand, the 
agreement between the present theory and Graham’s and Tippelskirch’s observa- 
tions (on the direction of flow at the cell centre) suggests that correct boundary 
conditions may not always be essential. It seems clear that Palm’s analysis 
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contains many of the important features necessary to describe Tippelskirch’s 
results. 

Point (iii) is both crucial and delicate and deserves careful discussion. The two 
main stages in Palm’s argument are summarized in $ 2 .  As far as stage (i) is 
concerned, it seems to us that one cannot argue that the disturbances will be 
selected so as to have the maximum amplification rate of linearized theory. For 
E > 0 (Ap > 0 )  there is a band of unstable wavelengths, and it is within the 
province of non-linear mechanics to determine which wavelength is preferred at 
finite amplitudes; a preliminary analysis of this kind is reported elsewhere (Segel 
1962). 

With reference to stage (ii), we think it is worth explaining further the concept 
of ‘mutual reinforcement ’. Consider a disturbance with two components, as 
follows: 

At second order, terms proportional to $2, 4: + @, $& + 2#& + c#ig appear, and 
give rise to factors like 

cos 2kx, 

q5 = A cos Icx cos ly + B cos mx cos ny. (7.1) 

cos 21y, cos 2kx cos 21y, cos (k f. m) x cos (1 5 n) y, 
cos 2mx, cos 2ny, cos 2mx cos 2ny. (7.2) 

To obtain reinforcement at  second order the original modes of (7.1) must occur 
in (7.2). Theconditionm = 0, n = 21,forexample,ensures this. (Butnotethatthere 
are other, physically equivalent, possibilities of this kind.) If the wave-numbers 
(k2 + Z2) and (m2 + n2) are the same, then k2 = 312; this is the case studied by Palm, 
and the consequences have been followed in this paper. (Another possibility is 
Ic = 3m, 1 = 2n, but this requires the Rayleigh number to be large enough for one 
unstable wave to have twice the wave-number of the other.) On the other hand, 
if one admits, as we think is necessary, the possibility of disturbances of different 
overall wave-numbers, then the problem cannot truly be limited to a study of the 
two disturbances (7.1). 

Afurther difficulty inherent in Palm’s suggestion is that reinforcement at  second 
order also requires a2 < 0, as can be seen from (3.3), (3.4). If a2 > 0, Palm (1960) 
suggests that ‘the sign of 2 may be changed by displacing the frame of reference 
through half a wavelength along the y-axis ’, but this displacement also affects the 
expression for the Y disturbance. In  fact if the Fourier spectrum of initial 
disturbances is specified (with say, a2 > 0), the sign of the component 2 cos 2Zy 
is given, and cannot be altered. (A possibility, however, is that, in regions where 
2 is of the proper sign for reinforcement, hexagons develop relatively quickly and 
then force this form on other regions by a kind of non-linear synchronization. 
It can be shown, in this connexion, that the hexagonal cell develops relatively 
more quickly than the two-dimensional cell.) 

These arguments lead us to the conclusion that further work should, if possible, 
be done on the interaction of many disturbances of varying cell shapes and wave- 
numbers. As far as the present results are concerned, it seems possible that the 
stable character of the two-dimensional roll is more likely to be altered (by the 
inclusion of many other disturbances) than is the result that the hexagonal cells 
are stable if the viscosity variation is sufficiently great; but the mathematical 
validity of this suggestion remains t o  be assessed. 
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The difficulty in point (iv) is neatly illustrated on figure 2. Consider the hexagon 
equilibrium point I11 b. If we restrict our consideration to hexagonal disturbances 
with Y = 22, we see that this is a stable equilibrium point. But for other disturb- 
ances in the neighbourhood of this (saddle) point we have instability. One can 
say that what appears to be a stable node in one-dimensional ‘disturbance space’ 
is in fact a saddle point in two dimensions. We do not know whether IVa, which 
appears to be a stable node on the two-dimensional disturbance space we have 
considered, is a generalized saddle point in the infinite dimensional space of all 
possible disturbances. We would also like to point out that, for the differential 
equatiolzs considered, the apparent non-uniqueness which would be obtained in 
searching for equilibrium states by means of a time-independent steady anaIysis 
is resolved by consideration of the time-dependent problem with appropriate 
initial conditions. 

Part of this work was done at the National Physical Laboratory and is 
published by permission of the Director; part was sponsored by the Office of 
Naval Research. The authors are indebted to Prof. E. Palm for private clarifica- 
tion of his ideas and for sending information about his corrected equations, and to 
Mr J. Watson for useful discussions. 

Appendix : Columnar instability 
Columnar instability was first reported by Chandra (1938). It consists of a 

bursting upwards of buoyant fluid at  irregularly spaced points, and has been 
observed also by Dassanayake (see Sutton 1950) and by de Graaf & van der Held 
(1953). (An apparently related phenomenon of downwards plunging sheets of 
fluid from a surface cooled by evaporation has been reported recently by Spangen- 
berg & Rowland (1961); it  seems likely, however, that surface tension was im- 
portant in their experiments.) Columnar instability was found by Chandra to 
occur in air for Rayleigh numbers less than the critical (1708) for two rigid surfaces 
with constant viscosity, provided the distance h between the two planes was less 
than about 1 cm. In  Dassanayake’s experiments with carbon dioxide, columnar 
instability occurred a t  subcritical Rayleigh numbers for values of h less than 
about 7mm. De Graaf & van der Held reported particular cases of columnar 
instability in air between two rigid surfaces at a Rayleigh number of 1400 and 
depths h of 5-5 and 6.9 mm. 

It may be noted that Palm’s work shows that the critical Rayleigh number of 
linear theory is lowered by the inclusion of variation of viscosity with tempera- 
ture, and has the value 

This effect may account for part of the observed reduction of the critical Rayleigh 
number, but it cannot account for the form taken by columnar instability because 
Palm’s convection cells are still regular. A further reduction of the theoretical 
critical Rayleigh number is afforded by the possibility (noted in this paper) of a 
subcritical instability for sufficiently large values of y/vo; this effect, however, can 
at  present only be evaluated from the non-linear perturbation method given in this 
paper, and on this basis the extra reduction of gc can be shown to be much 

%’c = (27n4/4) (1 -0*1925y2/~$). (A* 1) 
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smaller than the reduction already given by Palm’s linearized theory. Moreover, 
this subcritical effect also gives rise to a regular pattern of convection cells as ths 
equilibrium state (cf. figure 3). We note, however, that the threshold-amplitude 
boundary (curves G of figure 3) might be passed locally in the fluid-perhaps 
even with a single cell as the basis of the convection pattern-since we can expect 
the finite disturbance to be stimulated by random variations in boundary 
conditions. This possibility might account for the random appearance of columnar 
instability. It is also conceivable that, for larger amplitudes of disturbance 
(outside the range of validity of this theory), subcritical instability might occur at  
much lower Rayleigh numbers and lead to less regular (perhaps columnar) 
patterns of equilibrium disturbance. These suggestions, it must be emphasized, 
are speculative and have no mathematical backing. 

Since the Rayleigh number depends on the product of h and temperature 
difference AT ( = Po h),  it is clear that the influence of viscosity variations will be 
greater in thinner layers because there both the temperature difference and the 
associated viscosity difference have to be greater in order to achieve the same 
Rayleigh number. Thus, as his decreased, we may expect an increasing difference 
between the theoretical critical values of AT, calculated with and without the 
effect of variation of viscosity with temperature; a drop in the critical value of 
AT below the former of these values is, as we have stated, observed in experiment. 
The suggestion that ‘the very great temperature gradients in (thinner) layers have 
some bearing on the lowering of the critical (Rayleigh) number’ was first made by 
de Graaf & van der Held (1953). 

We now explain the theoretical justification for the above remarks. The 
criterion (6.1) a2+4eT > 0, ( e  < 0) for subcritical instability with hexagonal 
cells can be reduced approximately to the form 

A y z + Q x y - l  > 0, (A. 2 )  

where 5 = g h 3 / ~ v 0 ,  y = AT/T, = L%zl. (A. 3) 

The symbol gc0 denotes the critical Rayleigh number in the absence of viscosity 
variations and A is a constant for a given gas. We restrict attention to gases, for 
which a-l may be replaced by p, the absolute temperature. Thus xy is the 
Rayleigh number. In  deriving (A. 2 )  we have assumed that (i) the criterion (6.1) 
for subcritical instability is a representative one, even though the present model 
considers only a restricted class of disturbances, (ii) the wave-number is given by 
k2 + l2  = n2/2h2, in Palm’s notation, (iii) the viscous-variation coefficient y/v0 may 
be approximated by CAT/2p, where C is a constant for a given gas, and (iv) the 
coefficients in (A. 2 )  may be evaluated according to the theory with two free 
boundaries. Experimental data suggests that, for air, C = 1.8 and, for carbon 
dioxide, C = 1.95, approximately. The coefficient A ,  which depends on C, also 
depends weakly on the Prandtl number, which is 0.72 for air and 0.78 for carbon 
dioxide. With these values it is found that, for air, A = 0.16 and, for carbon 
dioxide, A = 0.19, approximately. 

If the coefficient A is set equal to zero, or if Qx + co for A fixed, equation (A. 2 )  
yields the usual criterion, 

xy > Q-l (i.e. 92 > 92co), (A. 4) 
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for instability in the absence of variation of viscosity with temperature. Two 
effects contribute to the coefficient A ;  the first is the reduction (according to 
Palm’s linearized theory) of critical Rayleigh number due to variation of viscosity 
with temperature, and the second is the subcritical effect discussed in 3 6 of this 
paper. The former of these two effects contributes about 95 % of the value of A ,  
both for air and for carbon dioxide, and this is the basis of the remark made 
earlier that the reduction due to the subcritical effect is much smaller than that 
due to Palm’s linear effect. 

It can readily be shown from (A. 2) that, for A of order 0.2, the critical value of 
y suffers a 5 yo or greater reduction (from the value given by linearized theory in 
the absence of viscosity variation) for Qx of order 2 or less. On the other hand, 
Chandra’s and Dassanayake’s experiments show noticeable deviations (from the 
criterion given by linearized theory in the absence of viscosity variations) for 
Ox of order 30 or less. In  de Graaf & van der Held’s experiments the corre- 
sponding value of Qx was of order 3 or 5, but did not necessarily represent the 
largest value at  which ‘noticeable deviations ’ were possible, It appears, there- 
fore, that quantitatively this theory and the experiments are not in agreement. 
It should be borne in mind, however, that (i) the theory is valid for ‘free-free’ 
boundary conditions, whereas the experiments had two rigid boundaries, and 
(ii) that the non-linear theory is valid only for small-amplitude perturbations. 
It is possible that these limitations, together with assumptions (i), (ii) and (iii) 
made earlier, have some bearing on the lack of quantitative agreement; but it is 
necessary to emphasize that this theory also does not predict the correct 
‘columnar’ type of unstable behaviour. 

From a qualitative point of view, equations (A.3)  and (A.3)  illustrate a 
behaviour very similar to that observed by Chandra and Dassanayake. Chandra 
plotted his experimental results in the form of 7 = AT/Kv,, T against ( = h; but, 
for a given gas, with constant values of K and vo, these variables are completely 
equivalent to the ones in (A. 3). Thus the behaviour given by (A. 2 ) ,  namely a 
reduction in the critical value of y (from its value according to linearized theory 
without viscosity variation) as x decreases, is seen to be in qualitative agreement 
with the experimental results. It is also perhaps noteworthy that the closeness of 
the values of A in (A. 2) for air and carbon dioxide is qualitatively in accordance 
with the fact that the experimentally observed values of Qx for ‘noticeable 
deviations ’ are about the same for these two gases. It is qualitative features such 
as these which, we feel, justify our advancing the present theoretical argument. 
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